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Abstract

Besides reviewing historical development and prerequisites, we present the main ingredients

needed for calculations with spectral sequences for this purpose. These include the Bousfield-

Kuhn functor, the Goodwillie tower and so on. We then outline current approaches to running

such spectral sequences from cohomology to homotopy, as well as indicate specific questions

to investigate.
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1 Introduction

1.1 The history of v-periodic homotopy group

In the E2-page of the Adams spectral sequence of the low stems, some structures appear
periodically at the top of the table.1 This naturally raises a question. Does a periodic structure
appear in the homotopy groups of spheres?

In [14], Mahowald and Davis use the self-map to construct the v-periodic element in stable
homotopy group:

Definition 1.1. Let X be a finite complex. A periodic operator is v ∈ [ΣiX,X] such that
vk ̸= 0 ∈ [ΣikX,X] for all k > 0. A class α ∈ [X,Z] is v-periodic if α ◦ vk ̸= 0 for all k. A class
β ∈ [Sj,W ] is v-periodic if, for some skeleton X(t−1) of X , β can be decomposed as:

St i−→ X/X(t−1) β̄−→ Σt−jW. (1)

and for all such β and all k ≥ 0,

ΣikX
vk−→ X

p−→ X/X(t−1) β̄−→ Σt−jW. (2)

is essential. Here Z, W are spectra, and the corresponding group are in the meaning of stable maps.

1The study of the periodic phenomenon in the classical Adams spectral sequence can be found in [24], this periodic
property also induces a periodic property in the homotopy group of the sphere spectrum.
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With the above definition, we can identify these periodic elements in the homotopy group. In
particular, a v-periodic element of π∗(S0) gives rise to an infinite family of nonzero elements of
π∗(S

0) by choosing for each k the first cell on which βpvk is essential.
Naturally, we are wondering whether the choice of X and v influence the v-periodic elements

in a π∗(Z) or not, as well as if X has to satisfy some restrictions to support a self-map. To answer
these questions, we need to introduce the chromatic perspective. Roughly speaking, it gives us a
filtration of self-maps.

The study of chromatic homotopy theory gives us more information about the self-map. In
[17], Devinatz-Hopkins-Smith proved the nilpotence theorem which describes a restriction for X
to support a permanent self-map f :

Theorem 1.1. Let MU∗ be the complex bordism theory. There is a homology theory MU∗ such that
a self-map f of a finite CW complex X is stably nilpotent if and only if some iterates of MU∗(f)

are trivial. The remaining map is periodic.

However, the MU is too big. As a result, we always deal with some ”localization” versions
of it, such as BP , E(n) and K(n), to simplify the problem. In particular, the K(n) can detect a
specific part of those permanent self-maps by the periodic theorem proved by Hopkins-Smith in
[19]:

Theorem 1.2. Let X and Y be p-local finite CW-complexes of type n for n finite. The type of a
p-local space X can be defined as the smallest integer such that K(n)∗(X) is nontrivial.

• There is a self-map f : Σd+iX → ΣdX for some i ≥ 0 such that K(n)∗(f) is an isomorphism
and K(m)∗(f) is trivial for m > n. When n = 0 then d = 0, and when n > 0 then d is a
multiple of 2pn− 2. We called this self-map a vn self-map. What’s more, there’s an analogue
when X is a spectrum.

• Suppose h : X → Y is continuous and both of them have already been suspended enough
times to be the target of a vn-self-map. Let g : ΣeY → Y be a vn-self-map. Then there
are positive integers i and j with di = ej such that the following diagram commutes up to
homotopy. (The ”uniqueness” of vn map.)

•

ΣdiX

X

ΣdiY

Y

f i gj

Σdih

h

Now we can give an explicit definition of the periodic part in the stable homotopy group.

3



Definition 1.2. the vn-homotopy group (with coefficient V ) for a spectrum X and a spectrum V

which supports a vn-self-map v:

v−1n π∗(X;V ) := v−1[Σ∗V,X]Sp. (3)

We can prove that the choice of v doesn’t influence the vn-homotopy group of X .[28]

1.2 Bousfield localization and stable vn-periodic homotopy group

If we use the above definition directly, we will find that determining whether a map f : X → Y

induce a vn-periodic homotopy isomorphism is hard. So we hope to find a simple method to judge
this. Recall that in rational homotopy theory and p-adic homotopy theory, the isomorphism
between homology groups can induce isomorphism between homotopy groups. Since K(0)∗ is the
rational homology theory, we have a natural conjecture: Is the K(n)∗-isomorphism decides the
v−1n π∗-isomorphism? If not, is there any other spectrum that can decide it?

Actually, v−1n π∗-isomorphism is equivalent to T (n)∗-isomorphism. Here the spectrum T (n)

is defined as:

Definition 1.3. For a type n p-local spectrum V with a vn-self-map v,

T (n) = v−1n V := hocolim(V
v−→ Σ−kV

v−→ Σ−2kV
v−→ · · · ). (4)

This spectrum is independent of the choices of V and v in the meaning of homotopy equivalence
due to the class invariance theorem.

Here, the class invariance theorem is

Theorem 1.3 (Class Invariance Theorem). Let X and Y be p-local finite CW-complexes of types m
and n. Then ⟨X⟩ = ⟨Y ⟩ if and only if m = n, and ⟨X⟩ > ⟨Y ⟩ if and only if m > n.

To reveal the relationship between T (n) and K(n), we need to introduce the Bousfield
localization and the Bousfield equivalence. Aiming at calculating K(n)∗(X) as well as other
generalized (co)homology theories, Bousfield localization was developed in [10] and [9]. This tool
enables us to simplify the X into LEX , an E-local spectrum, without changing E∗(X) for any given
homology theory E∗. Bousfield localization can be done functorially.

Bousfield equivalence is designed to classify these localization functors. For two different
spectra A and B, their Bousfield equivalence class ⟨A⟩ = ⟨B⟩ if and only if LAX ≃ LBX for any
spectrum X .
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There is only one thing we need to check: is ⟨K(n)⟩ = ⟨T (n)⟩ in general? That is the
telescope conjecture. In [25] and [23], the case of n = 1 was proved. For n ≥ 2, we believe that
this conjecture would fail at an early time. But the disproof was not completed until the 6th, June,
2023.1 However, we have few tools to calculate T (n)∗(X). As a result, we just use T (n)∗ for
some abstract proof. If we aim at calculating the vn-periodic homotopy group, we have to consider
LK(n)X 2 instead of LT (n)X although some classes of vn-periodic homotopy group may be killed
in the K(n)-localization.

1.3 Bousfield-Kuhn functor and unstable vn-periodic homotopy group

Now, we can move our steps to the unstable range. The periodicity theorem implies that a
finite type n complex V also admits a vn-self map:

v : Σk(N0+1)V → ΣkN0V (5)

for some N0 ≫ 0. For any X ∈ Top∗, the unstable vn-periodic homotopy group (with coefficient
V ) can be defined as [8]:

v−1n π∗(X;V ) := v−1[Σ∗V,X]Top∗ (6)

for n > 0. Although this definition only makes sense for ∗ ≫ 0, the k-periodicity ensures that it
can be defined on any ∗ ∈ Z.

Since we only have enough tools to compute homotopy groups in the stable range, we need
to pull the unstable vn-periodic homotopy group back to the stable range. The tool we use is
the Bousfield-Kuhn functor Φn. It is a functor from Top∗ to Sp (actually SpT (n)) which allow
us to calculate v−1n π∗(X) by π∗(ΦnX). We can prove that the definition of unstable vn-periodic
homotopy group is compatible with the stable one. The definition and properties of this functor
will be introduced explicitly in the following section. We will only show some important properties
of this functor in this section.

Proposition 1.4. •
• Φn preserves fiber sequences.
• v−1n π∗(X;V ) = [Σ∗V,Φn(X)]Sp

• If Z is a spectrum, then ΦnΩ
∞Z = LT (n)Z.

1https://www.uio.no/studier/emner/matnat/math/MAT9580/v23/beskjeder/disproof-of-the-telescope-conjecture.html

2This corresponds to the chromatic homotopy theory.
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1.4 The Goodwillie tower

Now we need to find some methods to calculate the π∗(ΦnX), or its K(n)-localization. The
K(n)-localization is denoted as ΦK(n) := LK(n)Φn. The tool we need is the Goodwillie tower.

To explain it, we need some ideas in the rational homotopy theory. In rational homotopy
theory, the information of rational homotopy type can be encoded by a rational differential graded
Lie algebra L(X) and a rational cocommutative differential graded coalgebra C(X). Suillivan
connected them by the minimal model Λ(X)[29] with the following equation.

π∗(X)Q ∼= DQΛ(X) (7)

Unstable p-adic homotopy type of a simply connected finite type space is similarly encoded
in its Fp-valued singular cochains. However, the p-adic analogue of the above equation fails. As
a result, people discovered other localization of unstable homotopy groups for which the analogue
of the above equation holds. That leads to the unstable chromatic homotopy theory. So there is a
tight connection between rational homotopy and vn-periodic homotopy groups.

Now we talk more about the Lie algebra structure. The algebra structure of π∗(X) is decided
by the homotopy group of X as well as the Lie algebra structure decided by the Whitehead product.
In rational homotopy theory, the structure is simplified to the Lie algebra structure only. What’s
more, Quillen’s work on rational homotopy theory reveals that:

Theorem 1.5. There is an equivalence of homotopy theories:
{Simply connected pointed rational spaces} ∼−→ {Connected differential graded Lie algebras over
Q }
Moreover, if X is a simply connected pointed rational space which corresponds to a Lie algebra g∗

under this equivalence, then the Lie algebra (π∗+1(X), [•, •]) can be identified with the homology
of g∗

The lower central series filtration of g∗

· · · ⊆ g(4)∗ ⊆ g(3)∗ ⊆ g(2)∗ ⊆ g(1)∗ (8)

decides a tower:
· · ·X4 → X3 → X2 → X1 → X0 ≃ ∗ (9)

This tower is useful because we can use this to calculateπ∗(Fn), whereFn is the fiber ofXn → Xn−1.
The Goodwillie tower is a refinement of this picture which works at the integral level.

For a fixed functor F form some category to Spectra, the Goodwillie tower can be represented
as a tower

· · · → P4(X)→ P3(X)→ P2(X)→ P1(X). (10)

6



For each Pi(X), we have a map from X to Pi(X) and they satisfy the natural commutative
diagram. The fiber of Pn(X) → Pn−1(X) is called Dn(X), which is an infinite loop space
Ω∞((Σ∞X)n ∧ O(n))hΣn , where O(n) can be explicit defined.1 We have some methods to
calculate its homotopy group.

The Goodwillie tower has a commutative property with the Bousfield-Kuhn functor with some
minor restrictions. That is,

PkΦn ≃ ΦnPkId. (11)

It is also true for ΦK(n). So we just need to study the Goodwillie tower of Id to understand the
properties of Φn.

1.5 The method of the explicit calculation

Now, we can introduce the known paths of calculating π∗(ΦK(n)(X)). There are two possible
approaches I know to calculate these groups. One is introduced in [30] by Wang, and another one
is introduced in [7] by Behrens and Rezk. These two approaches share a similar frame, but the
details of the calculation are different. I will introduce the approach of Wang first.

By considering E(n)-Adams spectral sequence of ΦK(n)(X), we have

ExtEn∗En(En∗, En(ΦK(n)(X)))⇒ π∗(ΦK(n)(X)). (12)

Here the En means En-homology. Since ΦK(n)(X) is K(n)-local, according the Appendix A of
[16], we can transform it into the following form:

H∗c (Gn, En(ΦK(n)(X)))⇒ π∗(ΦK(n)(X)). (13)

Here Gn is the Morava stabilizer group. We call the original form K(n)-local E(n)-Adams spectral
sequence, and the second form as a special case of homotopy fixed point spectral sequence.2

Then, we need to calculate the En-homology of ΦK(n)(X). We can give a resolution of
ΦK(n)(X) by Goodwillie tower. By acting En∗ on the Goodwillie tower, we can get En(ΦK(n)(X))

by the Atiyah-Hirzebruch spectral sequence if we know En(Dk(ΦK(n)(X))) for each k as well as
the attaching map of Goodwillie tower. The differentials of that spectral sequence can be calculated
by representing those generators in H∗c (Gn,Fp).

Here, we need to consider X as Sm where m is odd because we know enough information
of Dk(ΦK(n)(S

m)). In this situation, the attaching map of Goodwillie tower is decided by the

1O(n) is the ∂kF , the kth derivative of F, where F is a functor.

2Some papers directly use the homotopy fixed point spectral sequence to describe this, but I prefer to treat it as a special
case of the Adams-Novikov spectral sequence.
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James-Hopf map1, and Dk(ΦK(n)(S
m)) is homotopy equivalence to some spectrum related to the

Steinberg summand of BFn
p . That is,

DptS
k ≃ Ω∞Σk−tL(t)k (14)

while DmS
k ≃ ∗ for m ̸= pt, t ∈ N. Here the L(t)k is the Steinberg summand, which we will

introduce later.
Since we can get En∗(X) by BP∗(X) ⊗BP∗ En∗, the remaining work is calculating the BP -

homology of L(t)k. The E2-page of Adams spectral sequence of BP∗(L(t)) is calculated in [20]
if we know the ordinary cohomology of L(K) and it can be calculated by analysing the base of
ordinary cohomology of L(k) represented by βϵ1P i1βϵ2P i2βϵ3P i3 · · · admissible. However, if we
need the full comodule structure of it, we need the vn-hidden extension in this spectral sequence.

As a result, we need the BP -cohomology of L(t), which can be calculated by Koszul complex
2 BP ∗(L(t)k) can be describe by BP ∗(L(t)) and Dickson-Mui generators.3

Then, using this En-homology as an input, we get the E2 page of the above spectral sequence.
In particular, for n = 2 and p ≥ 5, there is no possible nontrivial differential in the Adams-Novikov
spectral sequence, so we get its unstable vn-periodic homotopy group.[30]

Another approach uses a similar spectral sequence but it calculates En(S
m) in a very different

way. In [7], Behrens and Rezk constructed a natural transformation from pointed spaces to K(n)-
local spectra called the comparison map.

CSK : ΦK(n)(X)→ TAQSK
(S

X+

K ) (15)

This transformation relates ΦK(n)(X) to the topological Andre-Quillen cohomology. For X is
an odd sphere, the comparison map is an equivalence. In addition, those spaces for which the
comparison map is an equivalence are called ”ΦK(n)-good”. Some works have been done to study
these spaces such as [6]. But in this article, we will not discuss this.

Ching’s work [13] shows that TAQSK
(S

X+

K ) has the structure of an algebra over the operad
formed by Goodwillie derivatives ∂∗(Id). This can be regarded as a topological analogue of the Lie
operad. As a result, we can see TAQSK

(S
X+

K ) as a Lie algebra model for the unstable vn-periodic
homotopy type of X (or in a short way, an analogue of L(X)).

Since Dyer-Lashof algebra ∆q can be used to construct a form of Andre-Quillen cohomology,

1Only for spheres.

2Koszul complex can be seen as a special type of bar construction. Behrens and Rezk show that the information of L(n)
is encoded by some Koszul complex in their paper.

3The L(t)k can be seen as the result of unstable filtration for k odd. This filtration can be defined by the powers of Dn,
the nth Dickson-Mui generator.
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we can relate the Andre-Quillen cohomology with the Koszul resolution of ∆q. It was finished by
constructing a bar construction model for Kuhn’s filtration on topological Andre-Quillen cohomol-
ogy, in which layers of this filtration are equivalent to the spectra L(k)q. Then we can show the
E-homology of the spectrum L(k)q is isomorphic to to the dual of kth term of the Koszul resolution
for ∆q. In spectral sequence’s way, this can be described as

Exts∆q(Ẽn,t(S
q), Ēn,t)⇒ En,q+t−s(ΦK(n)(S

q)) (16)

for q odd. The attaching map of Goodwillie tower can be studied simultaneously in this approach.
This approach is used by [32] for calculating En∗(ΦK(n)(S

2m+1)).

1.6 The problem we are facing and the possible solution

In the above calculation, we found that there are too many potential nontrivial differentials in
the Adams-Novikov spectral sequence for most cases. We have few tools to deal with them since
ΦK(n)(S

2m+1) is not a ring spectrum in general. This makes the calculation along these approaches
unavailable for many cases. As a result, we need to develop a new approach to fix this problem.
Roughly speaking, the idea is ”switch” the order of spectral sequence.

Goodwillie tower
(−)GLn(Fp)

−−−−−−→ H∗c (Gn, En∗(ΦK(n)(S
q)))

(−)D×

−−−−→ π∗(ΦK(n)(S
q)). (17)

Goodwillie tower
(−)D×

−−−−→ ?
(−)GLn(Fp)

−−−−−−→ π∗(ΦK(n)(S
q)). (18)

It is inspried by the following duality in algebra geometry:

LT ∞

∐
Z B̊n−1=

Dr∞

∐
ZΩ =

Pn−1 Ω

LT K DrK

LT GLn(OF ) DrGLn(OF )

K

D×

D×

GLn(F )

GLn(OF )

Gross–Hopkins
period

K

GLn(F )

GLn(F )

D×

O×
D

Period
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The information of each odd sphere is encoded by the Koszul complex, the dimension of
these spheres induces a filtration. This information can be seen as a sheaf on LJGn for each
Morava stabilizer group. By acting homotopy fixed point spectral sequence on that, we can get the
(completed) En-homology for Φn(S

q). To understand what happened after this duality is the work
I need to do in the further study.

1.7 The structure of this article

This report organizes as follows. We divide the background ingredient into two parts: the
chromatic part and the calculation part. These instructions aim to explain the vague details in the
above introduction. To be specific, in the chromatic part, we will introduce the Morava K-theory,
vn-self map, Bousfield localization and equivalence, and the Bousfield-Kuhn functor.

For calculation, we will introduce some related spectral sequences such as the generalized
Adams spectral sequence, Atiyah Hirzebruch spectral sequence and the Bousfield-Kan spectral
sequence1. Then, we will briefly introduce some common parts of the known approaches, such as
the Goodwillie tower, Steinberg summand and topological Andre-Quillen cohomology.

Finally, we will formulate the problem we are facing and give a work plan in the last section.

2 Background of chromatic homotopy theory

2.1 Morava K-theory

Morava K-theory was first developed in the research of complex oriented bordism theory MU

and the formal group laws related to it. If the readers are interested in the history of it, they can
refer to [31].

By considering the classifying map m : CP∞ ∧ CP∞ → CP∞, a formal group law FMU is
decided. Its p-local part decided a spectrum BP , which also decided a formal group law FBP .

For a formal group law F , we define f +F g = F (f(x), g(x)), and for any n > 0,

[n]F (x) := x+F · · ·+F x︸ ︷︷ ︸
n

(19)

With the above definition, we can give the explicit structure of FBP

Theorem 2.1 (Hazewinkel). Let p be any prime. There is an isomorphism of Z(p)-algebras

BP∗ ∼= Z(p)[v1, v2, · · · ] (20)

1This spectral sequence relates to the Goodwillie tower and the homotopy fixed point spectral sequence.
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where the generators vi ∈ BP2(pi−1) may be chosen to be the coefficients of xpi in the series

[p]FBP
(x) =

∑
i>0

vix
pi (21)

The height of a formal group law(of commutative Fp-algebra A) is the power of the leading
term of the series of [p]F (x) logarithmic over p. If [p]F (x) = 0, the height of F is defined to be∞.
Consider the ring homomorphism θn : BP ∗ → A defined by θn(vn) = 1andθn(vi) = 0, fori ̸= n.
Put Fn(x, y) = (θ)∗FBP . From the above theorem, we know Fn is height n. By the Landweber
exact functor theorem [22], Fn decides a complex-oriented cohomology theory. This cohomology
theory is K(n).

For geometry construction, we can get Morava K-theory by killing generators in BP . Some
other relevant spectra are also defined here:

BP ⟨n⟩ ∼= Z(p)[v1, v2, · · · vn]P (n) ∼= Fp[vn, vn+1, · · · ]k(n) ∼= Fp[vn] (22)

The spectrum k(n) is the (−1)-connected version of the spectrum K(n) of Morava K-theory.
Using k(n) one defines K(n) by

K(n) = holim[Σ−2i(p
n−1)k(n)→ k(n)] (23)

Similiarly, the Morava E-theory E(n) can be defined as the homotopy limit of BP ⟨n⟩.
In conclusion, we can summarize the above properties into a theorem:

Theorem 2.2. Let p be any prime. For all integersn ≥ 1 there is a multiplicative, 2(pn−1)-periodic
and complex-oriented cohomology theory K(n)∗(−) with coefficient ring

K(n)∗ = Fp[vn, v
−1
n ] (24)

where vn is of degree |vn| = 2(pn − 1) and whose associated formal group law Fn(x, y) satisfies
the relation

[p]Fn
(x) = vnx

pn . (25)

In addition, If p is odd, the product on K(n)∗(−) is commutative, for p = 2 it is non-commutative.

A very important aspect of the Morava K-theories is the fact that they are strongly related
to BP -theory and complex cobordism via several types of intermediate spectra. The calculation
about K(n) is also useful to the calculation of stable homotopy group of sphere [3] and [26].

Theorem 2.3. Let N be a BP∗BP -comodule in which every element is In-torsion and vn acts
bijectively. Then there is a natural isomorphism

Ext∗BP∗BP (BP∗, N) ∼= Ext∗Σ(n)∗(E(n)∗, E(n)∗ ⊗BP∗ N). (26)
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Theorem 2.4. The natural projection BP∗ → K(n)∗. induces an isomorphism

Ext∗BP∗BP (BP∗, v
−1
n BP∗/In) ∼= Ext∗K(n)∗K(n)(K(n)∗, K(n)∗). (27)

What’s more, K(n) has the unique property. So we can define it in an axiom way. This
definition is the most common definition of Morava K-theory today.

Theorem 2.5. For each prime p there is a sequence of homology theories K(n)∗ for n ≥ 0 with
the following properties. (We follow the standard practice of omitting p from the notation.)

• K(0)∗(X) = H∗(X;Q) and K(0)∗(X) = 0 when H∗(X) has only torsion summands.
• K(1)∗(X) is one of p− 1 isomorphic summands of mod p complex K-theory.
• K(0)∗(pt.) = Q and for n ≥ 1, K(n)∗(pt.) = Z/(p)[vn, V −1n ] where the dimension of vn

is 2pn − 2. This ring is a graded field in the sense that every graded module over it is free.
K(n)∗(X) is a module over K(n)∗(pt.).

• There is a Kunneth isomorphism

K(n)∗(X
∏

Y ) ∼= K(n)∗(X)⊗K(n)∗(pt.) K(n)∗(Y ). (28)

• Let X be a p-local finite CW-complex. If K(n)∗(X) vanishes , then so does K(n− 1)∗(X)

• If X is as above then

K(n)∗(X) = K(n)∗(pt.)⊗H∗(X;Z/(p)) (29)

for n sufficiently large. In particular, it is nontrivial if X is simply connected and not
contractible.

2.2 vn-self map

vn-self map is the self map of space (or spectrum) we are concerned with in this article.
Roughly speaking, it is non-nilpotent, graded by the chromatic level’s self-map. It can be detected
by Morava K-theory.

Definition 2.1. A p-local finite complexX has typen ifn is the smallest integer such thatK(n)∗(X)

is nontrivial. In particular, X has type∞ if it is contractible.

Theorem 2.6. Let X and Y be p-local finite CW-complexes of type n for n finite.
• There is a self-map f : Σd+iX → ΣdX for some i ≥ 0 such that K(n)∗(f) is an isomorphism

and K(m)∗(f) is trivial for m > n. (Such a map is called vn map which we will discuss
later.) When n = 0 then d = 0, and when n > 0 then d is a multiple of 2pn − 2.

12



• Suppose h : X → Y is continuous and both of them have already been suspended enough
times to be the target of a vn-map. Let g : ΣeY → Y be a self-map as before. Then there
are positive integers i and j with di = ej such that the following diagram commutes up to
homotopy. (The ”uniqueness” of vn map.)

•

ΣdiX

X

ΣdiY

Y

f i gj

Σdih

h

2.3 Bousfield localization and Bousfield equivalence

Bousfield localization is a special situation of localization over a spectrum E:

Definition 2.2. Let E∗ be a generalized homology theory. A space (or a spectrum) Y is E∗-local
if whenever a map f : X1 → X2 is such that E∗(f) is an isomorphism, the map

[X1, Y ]
f∗
←− [X2, Y ] (30)

is also an isomorphism.

An E∗-localization of a space or spectrum X is a map η from X to an E∗-local space or
spectrum XE (which we will usually denote by LEX) such that E∗(η) is an isomorphism.

The property of E∗-local is stable under the inverse limit, fiber sequence and smash product.
But it is not stable under the homotopy inverse limit. In [12] and [11], Bousfield proved that for any
homology theory E∗ and any space or spectrum X , the localization LEX exists and is functorial
in X .

For a ring spectrum E, its localization is simple:

Theorem 2.7. If E is a ring spectrum, then E ∧X is E∗-local for any spectrum X .

Since K(n) is a ring spectrum, we can easily give the definition of LK(n)

Next, we can consider when two different spectra E and F induce the same localization
functor. This question leads to the Bousfield equivalence:

Definition 2.3. Two spectra E and F are Bousfield equivalent if for each spectrum X , E ∧ X is
contractible if and only if F ∧X is contractible. The Bousfield equivalence class of E is denoted
by ⟨E⟩.

We will list some definitions and properties of Bousfield equivalence above:

13



• ⟨E⟩ ≥ ⟨F ⟩, if for each spectrum X , the contractibility of E ∧X implies that of F ∧X .
• ⟨E⟩ ∧ ⟨F ⟩ = ⟨E ∧ F ⟩ and ⟨E⟩ ∨ ⟨F ⟩ = ⟨E ∨ F ⟩.
• A class ⟨E⟩ has a complement ⟨E⟩c if ⟨E⟩ ∧ ⟨E⟩c = ⟨pt.⟩ and ⟨E⟩ ∨ ⟨E⟩c = ⟨S0⟩. Here the
S0 is the sphere spectrum.

• The operations ∧ and ∨ satisfy the obvious distributive laws:

(⟨X⟩∧⟨Y ⟩)∨⟨Z⟩ = (⟨X⟩∨⟨Z⟩)∧(⟨Y ⟩∨⟨Z⟩)(⟨X⟩∨⟨Y ⟩)∧⟨Z⟩ = (⟨X⟩∧⟨Z⟩)∨(⟨Y ⟩∧⟨Z⟩)
(31)

• The localization functors LE and LF are the same if and only if ⟨E⟩ = ⟨F ⟩. If ⟨E⟩ ≤ ⟨F ⟩
then LELF = LE and there is a natural transformation LF → LE .

Bousfield equivalence can explain why we consider the p-component of homotopy groups
separately. Let S0Q denote the rational sphere spectrum, S0

(p) the p-local sphere spectrum, and
S0/(p) the mod p Moore spectrum. Then we have

• ⟨S0/(p)⟩ = ⟨S0Q⟩ ∨ ⟨S0/(p)⟩
• ⟨S0⟩ = ⟨S0Q⟩ ∨

∨
p⟨S0/(p)⟩

• ⟨S0/(p)⟩ ∧ ⟨S0Q⟩ = ⟨pt.⟩
• ⟨S0/(p)⟩ ∧ ⟨S0/(q)⟩ = ⟨pt.⟩ (The orthogonal property)

For MU , there is a similiar result. Any readers interested in this can refer to Chap 7.3 of [28].
What’s more, the Class invariance theorem shows that the type of p-local spectrum decided its

class in Bousfield equivalence, which implies that the choice of type n spectrum V and self-map v

doesn’t infect the result of localization.

Theorem 2.8. Let X and Y be p-local finite CW-complexes of types m and n respectively. Then
⟨X⟩ = ⟨Y ⟩ if and only if m = n, and ⟨X⟩ < ⟨Y ⟩ if and only if m > n.

Bousfield localization of E(n) can be used to give the chromatic filtration of spectrum X .

Definition 2.4. LnX is LE(n)X and CnX denotes the fiber of the map X → LnX

With the following theorem, we can calculate BP∗(LnX) in terms of BP∗(X)

Theorem 2.9 (Localization theorem). For any spectrumX ,BP∧LnY = Y ∧LnBP . In particular,
if v−1n−1BP∗(Y ) = 0, then BP ∧ LnY = Y ∧ v−1n LnBP .

Then we can define the chromatic tower and chromatic filtration of X:

Definition 2.5. The chromatic tower for a p-local spectrum X is the inverse system

L0X ← L1X ← L2X ← · · ·X. (32)
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The chromatic filtration of π∗(X) is given by the subgroups

ker(π∗(X)→ π∗(LnX)) (33)

The advantage of this definition is that there are methods of computing π∗(LnX). In particular,
suppose X is a p-local finite CW-complex of type n with vn-self map f . Let X̂ be the telescope
decided by the vn-self map. Then K(n)∗(f) is an isomorphism. The same is true of K(i)∗(f)

for i < n since K(i)∗(X) = 0. Hence E(n)∗(f) is an equivalence. This means that the map
X → LnX factors uniquely through the telescope X̂ . That is, λ : X̂ → LnX . Moreover,
BP∗(LnX) = v−1n BP∗(X) and λ is a BP∗-equivalence.

For the vn-periodic homotopy group, Ravenel gave a conjecture

Theorem 2.10. Let X be a p-local finite CW-complex of type n. Is the map λ always an equivalence?

It is true for n = 0, 1, but for n ≥ 2, this conjecture is supposed to be false. However, since
we only have enough tools to compute the chromatic part, we usually calculate the π∗(LK(n)X)

instead.

2.4 Bousfield-Kuhn functor

Now since we are concerned about the unstable part, all of the tools we have is designed to
calculate in the stable range. So we need a functor to pull Space∗ back to Sp. That is the Bousfield
Kuhn functor.

By construction, ΦV (X) is a t-periodic spectrum whose 0th space is given by the direct limit
of the sequence

Map∗(V,X)→Map∗(Σ
tV,X)→Map∗(Σ

2tV,X)→ · · · (34)

In this definition, we need explicit V and v. To get rid of these, we need Ct to be the∞-category
whose objects are finite pointed spaces V equipped with a vn-self map v : ΣtV → V .

For each integer t > 0, the construction (V, v)→ ΦV determines a functor of∞-categories

Φ• : Copt → Fun(Space∗, Sp) (35)

By sending (V, v) to (V, vs), we get a functor Ct → Cst which fits into the following diagram.

Cs Cst

Φ• Φ•

Fun(S∗, Sp)
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By sending (V, v) to (ΣV,Σv), we get a functor Ct → Ct which fits into the following diagram.

Cs Cs+1

Φ• ΣΦ•

Fun(S∗, Sp)

Using these observations, we see that the functors Φ• can be amalgamated to a single functor
C ′ → Fun(Space∗, Sp), where C ′ is obtained from the ∞-categories Ct by taking a direct limit
along the transition functors given by suspension and raising self-maps to powers; more precisely,
we take C ′ to be the direct limit of the sequence

C1! → C2! → C3! → · · · (36)

where the map from C(m−1)! to Cm! is given by (V, v) → (ΣV,Σ(vm)). We will abuse notation by
denoting this functor also by Φ• : C ′ → Fun(Space∗, Sp). We can prove that the∞-category C ′

can be identified with the full subcategory of Sp spanned by the finite spectra of type ≥ n which
is denoted as Spfin≥n . Then the functor Φ• can be considered as Φ• : Spfin≥n → Fun(Space∗, Sp).
It can be described informally as follows: if E is a finite spectrum of type n, then we can choose
some integer k such that ΣkE ≃ Σ∞V , where V is a finite space of type n which admits a vn-self
map. In this case, we have ΦE = Σk ◦ ΦV .

By considerΦn(X) = lim←−−−
E→S0

ΦE(X), we can get the Bousfield-Kuhn functor. This functor
is unique and satisfies the following properties.

Proposition 2.11. • For every pointed space X , the spectrum Φn(X) is T (n)-local.
• There are equivalences ΦE(X) ≃ Φn(X)E , depending functorially on E ∈ Spfin≥n and
X ∈ Space∗.

• Φn(X) is left exact.
• If X is a spectrum, then ΦnΩ

∞X = LT (n)X (It shows that the unstable situation is compatible
with the stable situation.)

In particular, it is often more convenient to describeΦn(X) as the homotopy limit limΦEK
(X),

where
E0 → E1 → E2 → · · · (37)

is a direct system of type n spectra which is cofinal among all finite type n spectra with a map to
S0. Such a cofinal system can always be found: for example, in the case n = 1, we can take the
system of Moore spectra

Σ−1S0/(p)→ Σ−1S0/(p2)→ · · · (38)
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The vn-periodic homotopy equivalence f : X → Y induces a homotopy equivalence of spectra
Φn(X) → Φn(Y ). So this conversion from space to spectrum preserves all of the information of
the vn-periodic homotopy group. Actually, we can factor Φn(X) out as follows

Space∗
Mf

n−−→ Spacevn∗ −→ Sp. (39)

where Spacevn∗ is the category of pointed spaces which support vn-self map. The functor Φ :

Spacevn∗ → Sp admits a left adjoint Θ : Sp→ Spacevn∗

The K(n)-localization of Φn is denoted as ΦK(n) := LK(n)Φn. We are more concerned about
this part since we have enough tools to calculate it instead of T (n)-local spectrum.

3 Background of calculation

3.1 Generalized Adams spectral sequence

Adams spectral sequence is the most important tool for us to calculate the homotopy group.
It gives us a method to extract the homotopy information from the mod p cohomology, or other
cohomology theory. If we use the ordinary mod p cohomology, we get the classical Adams spectral
sequence. If we use the BP , we get the Adams-Novikov spectral sequence. For other cohomology
theories, there is some spectral sequence, but the above two spectral sequences are widely used.

In this subsection, unless otherwise stated all homology and cohomology groups will have
coefficients in Zp for a prime number p. We will start at the classical Adams spectral sequence.

Theorem 3.1 (Adams,[1]). Let X be a spectrum with a finite dimension of H∗(X). There is a
spectral sequence

E∗,∗∗ , dr : E
s,t
r → Es+r,t+r−1

r (40)

such that
Es,t

2 = Exts,tAp
(H∗(X),Zp)⇒ π∗(X)⊗ Z(p) (41)

Here Ap is the mod p Steenrod algebra.

What’s more, Adams spectral sequence is multiplicative if X is a ring spectrum.
Adams spectral is induced by the Adams resolution, which is a tower such that each fiber is

the wedge of some copies of Eilenberg-MacLane space (with some possible suspension).
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X X0

K0

X1

K1

X2

K2

g0 g1 g2

f0

=

f1 f2

We can roll it into an exact couple and get a spectral sequence. From the algebra perspective, it
is a (minimal) resolution of H∗(X) as anAp-module. That also leads to the computer computation
of E2 page of classical Adams spectral sequence.

If we repeat the same thing for other cohomology theories, we get the generalized Adams
spectral sequence. For a given cohomology theory E∗ (with some mild restrictions, such as E∗(E)

has a E-comodule structure), we have

Definition 3.1. An E∗-Adams resolution for X is a diagram

X X0

K0

X1

K1

X2

K2

g0 g1 g2

f0

=

f1 f2

such that for all s ≥ 0 the following conditions hold
• Xs+1 is the fiber of fs.
• E ∧Xs is a retract of E ∧Ks, i.e., there is a map hs : E ∧Ks → E ∧Xs such that hs(E ∧fs)

is an identity map of E ∧Xs. In particular, E∗(fs) is a monomorphism.
• Ks is a retract of E ∧Ks.
• Extt,u(E∗(Ks)) = πu(Ks) for t = 0 and it equals to 0 otherwise.

Here the explicit definition of Ext and the restrictions of E∗ at here can refer to the Appendix A1
and Chapter 2.2 of [27].

Like the classical Adams spectral sequence, this spectral sequence can detect theE-component
of π(X). That is,

Definition 3.2. An E-completion X̂ of X is a spectrum such that
• There is a map X → X̂ inducing an isomorphism in E∗-homology.
• X̂ has an E∗-Adams resolution {X̂s} with lim X̂s = pt.

The above resolution induces a spectral sequence:
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Theorem 3.2. An E∗-Adams resolution for X leads to a natural spectral sequence E∗,∗∗ with
dr : E

s,t
r → Es+r,t+r−1

r such that Es,t
2 = Ext(E∗(X))⇒ π∗(X̂)

If we let E = BP , we get the Adams-Novikov spectral sequence.
Finding an analogue of the minimal resolution of the comodule is difficult. So we use cobar

construction to get the canonical E∗-Adams resolution. It is useful for proof, but for calculation,
the cobar complex is too big to compute. Some other tools are developed to solve this problem.
Such as the May spectral sequence and lambda algebra. However, it’s not relative to this article.
Readers interested in this topic can read Chapter 3 of [27]. And the details of calculating the
Adams-Novikov spectral sequence can be found in Chapter 4.

3.2 Atiyah-Hirzebruch spectral sequence

The Atiyah-Hirzebruch spectral sequence is a generalization of the Serre spectral sequence,
which can help us calculate the generalized cohomology. For a (homotopy) fiber sequence F →
X → Y , the corresponding E-Atiyah-Hirzebruch spectral sequence is

Es,t
2 = Hs(X,Et(X))⇒ E∗(X). (42)

Here the H is the ordinary cohomology.
Analog to Adams spectral sequence, the Atiyah-Hirzebruch spectral sequence is multiplicative

if the cohomology theory E is decided by a ring spectrum. The Kronecker pairing ⟨−,−⟩ :

E∗(X)⊗E∗(X)→ π∗(X) passes to a page-wise pairing of the corresponding Atiyah-Hirzebruch
spectral sequence[21]

⟨−,−⟩r : εn,−sr ⊗ εrn,t → πs+t(X). (43)

3.3 Bousfield-Kan spectral sequence

We’ll work in sSet, so that everything is connective. Consider a tower of fibrations:

· · ·Ys
ps−→ Ys−1

ps−1−−→ Ys−2 · · · (44)

for s ≥ 0 and Y := lim← Ys, and Fs is the fiber of ps.
By acting π∗ on it and rolling it into a spectral sequence, we have:

Theorem 3.3. In this situation, there is a spectral sequence, called the Bousfield-Kan spectral
sequence:

Es,t
1 = πt−sFs ⇒ πt−sY (45)
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This spectral is useful if we apply it on the Tot tower. In [15], the author shows how to use
this method to get the homotopy fixed point spectral sequence.

Definition 3.3. Let X• be a cosimplicial object in sSet. Then, its totalization is the complex

Tot(X•) = sSet(∆•, X•) (46)

and
Totn(X

•) = sSet(skn∆
•, X•) (47)

Totn(X
•) → Totn−1(X

•) is a fiber in Reedy model structure. If C,D ∈ C and X• → C

is a simplicial resolution in a simplicial category C, then Hom(X•, D) is a cosimplicial object,
and this spectral sequence can be used to compute homotopically meaningful information about
sSet(C,D).

Let G be a group, and X be a spectrum with a G-action. Then, the homotopy fixed points of
X are

XhG := F ((EG)+, X)G (48)

i.e. the G-equivariant maps (EG)+ → X . The bar construction gives us a simplicial resolution
of (EG)+, producing a cosimplicial object that can be plugged into the Bousfield-Kan spectral
sequence. Specifically, we write EG = B•(G,G, ∗), add a disjoint basepoint, and then take maps
into X .

Theorem 3.4. If X is a spectrum with a G-action, there is a spectral sequence, called the homotopy
fixed-point spectral sequence, with signature

Es,t
2 = Hs(G, πt(X))⇒ πt−s(X

hG) (49)

3.4 The Goodwillie tower

In general, the Goodwillie tower describe the homogeneous degree d part for each d ≥ 0 of a
functor F : C → D.

Theorem 3.5 (Goodwillie,[18]). Given a homotopy functor F : C → D there existsa natural tower
of fibrations under F (X)
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F P0(F )

P1(F ) D1(F )

P2(F ) D2(F )

· · ·

such that
• PdF is d-excisive.
• ed : F → PdF is the universal weak natural transformation to a d-excisive functor

However, since the Bousfield-Kuhn functor has the commutative property with Goodwillie
tower as we introduce in the introduction, in this article we only concern about the Goodwillie
tower of Id. The theorem of Goodwillie can be rewritten as follows.

Theorem 3.6 (Goodwillie). Let X be a simply connected pointed space. Then X can be realized
as the homotopy limit of a tower

· · · → P4(X)→ P3(X)→ P2(X)→ P1(X) (50)

with the following features:
• The map X → P1(X) agrees with the unit map X → Ω∞Σ∞X .
• Each of the homotopy fibers DnX = fib(Pn(X)ßPn−1(X)) is an infinite loop space
Ω∞((Σ∞X)n ∧ O(n))hΣn , where O(n) can be explicit defined.

• O(t) is the ∂t(F ), which can be defined as

Ω∞∂n(F ) ≃ co lim
k1,··· ,kn

Ωk1+···+kncrn(F )(Sk1 , · · · , Skn) (51)

Here the crn is a functor crn : Spacen∗ → Space∗ defined by a formula

crn(F )(X1, · · · , Xn) = tfib

S →

 ∨
i/∈S⊆[n]

Xi

 (52)

The tfib is the total fiber, which is defined as

tfib(X) := fib

(
X (∅)→ lim

∅≠S∈P (I)
X (S)

)
(53)

The X is the I-cube, which is a functor from P (I)→ Space∗ and P (I) is the set of subsets
of a finite set I .
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If we apply the Bousfield-Kuhn functor on the Goodwillie tower, we have

· · · → ΦnP4(X)→ ΦnP3(X)→ ΦnP2(X)→ ΦnP1(X) ≃ LT (n)Σ
∞X (54)

and the homotopy fiber Dn(X) turns to:

ΦnDkX = LT (n)((Σ
∞X)k ∧ O(t))hΣk

(55)

In general, the homotopy limit of this tower need not be Φn(X) since the functor Φn does not
commute with infinite homotopy limits. But for sphere, this is true. When X is a sphere, the tower
stabilizes (ΦnDkX ≃ 0, when k ≫ 0.)

Come back to the Goodwillie tower of Id. In computational use, the above tower gives us a
Bousfield-Kan spectral sequence:

Es,t
2 : πs((Σ

∞X)t ∧ O(t))hΣt ⇒ πsX. (56)

The O(t) is
∂n(Id) ≃ D(Σ∞∆n) (57)

The explicit definition of ∆n can be found in 1

In particular, when X is SK , the sphere of dimension k, we have the following spectral
sequence:

Es,t
2 : πs(Σ

tkO(t))hΣt ⇒ πs(S
k). (58)

For more details about the general Bousfield-Kan spectral sequence the readers can refer to [5] or
Lurie’s lecture notes.

In [32], Zhu calculate the completed E-homology of Φ2(S
2m+1). Then we can use this and

the homotopy fixed point spectral sequence to calculate the target homotopy group. That is,

Es,t
2 = Hs(Gn, Ê∗(Φ2(S

2m+1))). (59)

3.5 Steinberg summand

The Steinberg idempotent is the element e = |GLn(FP )/Un|Σw∈W ϵnwB in the group ring
Z(p)[GLn(FP )]. Here W is the Weyl group, which is the permutation group in n elements in
the case of GLn, ϵ(w) is the parity of the permutation, nw its representative in the normalizer
of the split maximum torus, and B is the sum of elements in the Borel subgroup, i.e. the upper
triangular matrices, and U is the unipotent subgroup in the Borel subgroup, i.e. those matrices
with diagonals 1. This element generates a projective irreducible representation of GLn(FP ).
Since e is an idempotent, for any GLn(FP )-module we can define its Steinberg summand to be

1https://www.math.ias.edu/ lurie/ThursdayFall2017/Lecture11-Derivatives.pdf
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the image of e. This also extends to any spectrum acted by GLn(FP ). Concretely, the coefficients
in e are in Z(p), so when localized at p, any such spectrum has a self map defined by e, and its
Steinberg summand is just the fiber of 1 − e. Let BFn

P be the classifying space of the additive
group of the vector space over FP of dimension n. Then GLn(FP ) acts on it. Let ρ̄ be the reduced
regular representation of BFn

P , i.e. the sum of all the nontrivial irreducible representations. This
representation is GLn(FP )-equivariant, and also its multiples kρ̄. So the vector space defined by
them are also acted by GLn(FP ). By taking the Thom spectra, we construct spectra (BFn

P )
kρ̄

with GLn(FP )-action. Denote by L(n)k the Steinberg summand of (BFn
P )

kρ̄. Then it is shown in
[2] that the Goodwillie derivatives of spheres DpNS

k are homotopy equivalent to Ω∞Σk−nL(n)k.
We will abbreviate L(n)1 by L(n). There is yet another description of the L(n)’s. Let SP n(S)

be the nth symmetric power of the sphere spectrum. Then by Dold-Thom theorem, SP∞(S) is
a model for HZ. There is the filtration SP 1(S) → SP p(S) → SP p2(S) → · · · . One finds
L(n) = Σ−nSP pn(S)/SP pn−1

(S).

3.6 Topological Andre-Quillen (co)homology

Suppose that R is a commutative S-algebra, and that A is an augmented commutative R-
algebra. Topological Andre-Quillen homology of A (relative to R) was defined by Basterra in [4]
as a suitably derived version of the cofiber of the multiplication map on the augmentation ideal:

TAQR(A) = I(A)/I(A)∧2 (60)

If M is an R-module, then topological Andre-Quillen homology and cohomology of A with
coefficients in M are defined respectively as

TAQR(A;M) = TAQR(A) ∧R M (61)

TAQR(A;M) = FR(TAQ
R(A),M) (62)

As with TAQR, we define TAQR(A) := TAQR(A;R)

Basterra shows in above article that TAQ admits a simplicial presentation using the monadic
bar construction. This connects TAQ with the Koszul complex. The details can be found in [7].

4 Formulation of problem and the work plan.

Finally, we will formulate the question we want to solve and the method we want to try.
Since in the known approach, we have no tools to deal with thoes differentials in last spectral

sequence, we are trying to swap the order of these two spectral sequence in the known method.
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This is motivated by a duality between Lubin-Tate tower and Drinfeld tower in algebraic geometry.
To finish this duality, we need to understand those concepts appear in the known methods.

This part is supposed to be finished in summer vacation. Then, we will try to find their dual and
bulid a new frame of calculation. If we achieve this target, we will try some explicit calculation by
the new method as an example.
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