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1 Introduction

(In the following discussion below we always omit [1/e] from the notation. The serial numbers

correspond to the serial numbers in BKWX unless I mention its source.)

Briefly speaking, [BKWX] is the generalization of [GWX] for the non-cellular case. (That is, the whole

motivic stable homotopy category, instead of only the cellular part in GWX.) as well as for other base fields

than just C. To achieve this target, They built a t-structure called Chow t-structure on the motivic stable

homotopy category SH(k) over any base field k.

The non-negative part of such t-structure which is called SH(k)c≥0 is generated under colimits and

extensions by Thom spectra Th(ξ) associated to K-theory points ξ ∈ K(X) (equivalently formal differences

of vector bundles ξ = [V1] − [V2]) on smooth and proper schemes X (see Definition 2.1). We denote the

truncation functors by E 7→ Ec=0, Ec≥0, and so on. Here, we use Thom spectra since they are models of

MGL. Refer to Appendix A. Reasons are shown in the following paragraph.

Like what the authors did in [GWX], the topological part and the algebraic part are connected by a

spectral sequence in their hearts. The motivic bigraded homotopy groups of a homotopy object with respect

to the Chow t-structure can be expressed by Ext groups over MU2∗MU of its MGL homology (Theorem

1.1). This theorem allows us to build an equivalence between the Chow heart SH(k)♡ and something on

the algebraic side (Theorem 1.5). Restricting to some subcategory of (W -)cellular of modules of some

E∞-rings in SH(k), we get some equivalences like to the results in GWX.

For the proof of Theorem 1.5, BKWX follows the following strategy. For a motivic commutative

ring spectrum A ∈ CAlg(SH(k)), there is an induced Chow t-structure on the category A -Mod (just

let the non-negative part be generated by free A-modules of the form A ∧ Th(ξ), for X smooth proper

and ξ ∈ K(X)). We focus on the induced t-structures on 1c=0 -Mod and also MGLc=0 -Mod. The

free-forgetful adjunction

1c=0 -Mod ⇆ MGLc=0 -Mod (1)

defines a comonad C over MGLc=0 -Mod. We show that when restricted to subcategories of suit-

ably bounded objects, the adjunction is comonadic. Then with the technical developed in section 4.1,
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1c=0 -Modc♡ is equivalent to the category of Cc♡-comodules in MGLc=0 -Modc♡, where C -CoMod

has a natural t-structure which have some relations with the induced Chow t-structure of A -Mod and Cc♡

denotes the restriction of C in its heart.

Using the spectral Morita theory discussed in section 4.2, we can identify the category MGLc=0 -Mod

as a presheaf category which values in MU2∗MU -CoMod. Both of them have t-structure and the equiva-

lence is t-exact. The information of an object in the heart of MGLc=0 -Mod is equivalent to some object

in Cc♡ -CoMod. With the result SH(k)c♡ ≃ 1c=0 -Modc♡, we get the Theorem 1.5.

Remark. According to the work of Bondarko [Bon10], MGLc=0 -Modc♡ ≃ MGL -Modc♡ has an explicit

description. This proof is equivalent to what we summarized above as “spectral Morita theory”.

For the proof of Theorem 1.1, BKWX follows the following strategy. The main idea is to use a series

of t-structure as filtration. To achieve this target, the authors of BKWX use another t-structure on SH(k),

the homotopy t-structure. Its non-negative part SH(k)≥0 is generated under colimits and extensions by

{Σ∞
+ X ∧G∧n

m |n ∈ Z, x ∈ Smk}. For all d ≥ 0, the intersections

Id := ΣdSH(k)≥0 ∩ SH(k)c≥0 (2)

define a sequence of further t-structures. Here I is a subset in SH(k)c≥0 with some restriction which

decides a t-structure. We write τd=0 for the 0-th truncation functor with respect to Id. It turns out that

these t-structures form a direct system with the Chow t-structure as the colimit. Of course, the ”colimit” of

t-structures will be discussed later.

One key property of these t-structures is the following vanishing result.

Proposition 1.1. Let E ∈ SH(k)[1/e].

(1) π∗,∗τd=0E is concentrated in Chow degrees ≤ 0, and

(2) MGL2∗,∗τ
d
=0E equals MGL2∗,∗E and vanishes for other bidegrees.

As a result, the Adams Novikov spectral sequence for τd=0E collapses and converges to π∗,∗τ
d
=0E. The

canonical isomorphism can be written as

π2w−s,w(τ
d
=0E) ∼= Exts.2wMU∗MU (MU∗,MGL2∗,∗E) (3)

Since we can approximate Ec=0 as a colimit by τd=0E, the same result holds for the Chow t-structure. This

is exactly the statement of Theorem 1.1.

In BKWX, Theorem 1.3 in [GWX] (the equivalence between the motivic Adams spectral sequence for

S0,0/τ and the algebraic Novikov spectral sequence for BP2∗.) is generalized to Theorem 1.18 in BKWX.

Just like the result in GWX, Theorem 1.18 can help us to decide some differentials in the motivic Adams

spectral sequence.

I will list those theorems I just mentioned in the above paragraphs as follows.

Theorem 1.2 (1.1). Let E ∈ SH(k)[1/e]. Then there is a canonical isomorphism

π2w−s,wEc=i
∼= Exts,2wMU2∗MU (MU2∗,MGL2∗+i,∗E). (4)
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Here, on the right-hand side, s is the homological degree, and 2w is the internal degree.

Remark: 1c=0 and 1∧p /τ are E∞-rings over C.

Definition 1.1 (1.4). The category of pure MGL-motives, denoted by PMMGL(k), is the smallest idempo-

tent complete additive subcategory ofMGLc=0 -Mod containing the objectX{i} := (Σ2∗,∗X+∧MGL)c=0

for each i ∈ Z and smooth proper variety X .

Theorem 1.3 (1.5). The functor sending F ∈ SH(k)c♡[1/e] to the presheaf on PMMGL(k) given by

F∗(X) = [Σ2∗, ∗X+, F ∧ MGL] induces an equivalence of categories between SH(k)c♡[1/e] and the

category of enriched presheaves on PMMGL(k) (with values in MU2∗MU -comodules).

Theorem 1.4 (1.8). There is a symmetric monoidal equivalence

1c=0 -Mod[1/e] ≃ Hov(1c=0 -Mod[1/e]c♡). (5)

Theorem 1.5 (1.9). (1) There is an equivalence

SH(k)[1/e]cell,c♡ ≃ MU2∗MU = CoMod[1/e]. (6)

(2) The cellular subcategory is equivalent to Hovey’s stable category of comodules

1c=0 -Modcell[1/e] ≃ Hov(MU2∗MU)[1/e]. (7)

Theorem 1.6 (1.18). Let F ∈ SH(k)c♡. Let M = MGL2∗,∗F be the associated MU2∗MU -comodule.

Then the trigraded motivic Adams spectral sequence for F based on HZ/p is isomorphic (with all higher

and multiplicative structures) to the trigraded algebraic Novikov spectral sequence based on H for M .

Here the H is got by the correspondence in Theorem 1.9 of the element HZ/p ∧ 1c=0, that is,

MU2∗MU/(p, a1, a2, · · · ).

2 Elementry properties of the Chow t-structure.

In GWX, the authors found that the category 1
∧
p /τ -Mod of cellular modules over 1∧p /τ is purely

algebraic. That is, the heart is equivalent to MU2∗MU∧
p -CoMod and the information of the whole module

category can be recovered by Hovey’s stable category of MU2∗MU∧
p . In BKWX, this result is generalized

to an integral result over arbitrary fields, using 1c=0 as a replacement for 1∧p /τ . The 1c=0 is decided by the

Chow t-structure of SH(k), which have some good properties that we will introduce in this section.

In the lecture, we will just list the main results in this part without any explanation or remark in

this part. The audience can refer to the original paper if they are interested in this part.

Suppose that S is a scheme.

Definition 2.1. Denote by SH(S)c≥0 the subcategory generated under colimits and extensions by motivic

Thom spectra Th(ξ) for X smooth and proper over S and ξ ∈ K(X) arbitrary. This is the non-negative
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part of a t-structure on SH(S) [HA, Proposition 1.4.4.11(2)] called the Chow t-structure. We denote the

non-positive part by SH(S)c≤0, the heart by SH(S)c♡ and write E 7→ Ec≥0, Ec≤0, Ec=0 for the truncation

functors. We also put SH(S)c≥n = ΣnSH(S)c≥0 and define SH(S)c≤n, Ec≥n etc. similarly.

By some basic properties of t-structure, E ∈ SH(S)c≤0 if and only if [ΣiTh(ξ), E] = 0 for all i > 0.

We can also find the strong duals of ThS(ξ) ∈ SH(S) (Lemma 2.5).

Here are some other properties: Chow t-structure is compatible with filtered colimits and the symmetric

monoidal structure of SH(S) (Proposition 2.7, 2.9).

Proposition 2.1. The Chow t-structure is compatible with filtered colimits: SH(S)c≤0 is closed under

filtered colimits (and so are SH(S)c≥0 and SH(S)c=0).

Corollary. The functor E 7→ Ec≤0 : SH(S) → SH(S) preserves filtered colimits.

Proposition 2.2. We have

SH(S)c≤0 ∧ SH(S)c≤0 ⊂ SH(S)c≤0 (8)

Definition 2.2. SH(S)pure ⊂ SH(S)c≤0 the smallest subcategory that is closed under filtered colimits and

extensions and contains Th(ξ) for any K-theory point ξ on a smooth proper scheme X over S.

Proposition 2.3. We have

SH(S)pure ∧ SH(S)c≤0 ⊂ SH(S)c≤0 (9)

Corollary. For X ∈ SH(S)pure, Y ∈ SH(S) we have Yc≤0 ∧X ≃ (Y ∧X)c≤0, Yc≥0 ∧X ≃ (Y ∧X)c≥0

and Yc=0 ∧X ≃ (Y ∧X)c=0.

Definition 2.3. SH(S)lisse is the stable presentable subcategory generated by SH(S)pure.

Proposition 2.4. The Chow t-structure on SH(S)lisse is right complete (but not typically left complete).

Definition 2.4. A spectrum E ∈ SH(S)lisse is Chow-∞-connective if E ∈ SH(S)c≥n for all n.

Proposition 2.5. If E ∈ SH(S)lisse is η-periodic, then E is Chow-∞-connective.

Proposition 2.6. The Chow t-structure has some compatibility with the base change.

Proposition 2.7. The Chow t-structure has some compatibility with cellularization.

3 Relationship to algebraic cobordism

The authors show that the Chow t-structure is the ”colimit” of directed systems of t-structures (actually

the directed systems of truncation functors) as we mentioned in the sketch of proof of Theorem 1.1. Since

the MGL-homology groups of those objects in the heart of such t-structures have some good properties
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which are preserved by the colimit, the MGL-homology of the elements in the Chow t-structure can be

computed by Adams-Novikov spectral sequence (actually it collapses at the E2-page).

Here’s some notation in this section. We let S = Spec(k) be the spectrum of a field of exponential

characteristic e, and we implicitly invert e throughout. Thus we write SH(k) for SH(k)[1/e], and so on.

The main reason for this is that we need to use a vanishing result for algebraic cobordism (Theorem B.1)

which is proved by relating algebraic cobordism to higher Chow groups, and this relationship is currently

only known away from the characteristic [Hoy15].

We can choose an I ⊂ SH(k)c≥0 which is s closed under colimits and extensions and generated by a

set of compact objects. We can generate a t-structure with I , the non-negative part is denoted as SH(k)I≥0,

and other notations are decided in the same way.

Proposition 3.1. Let E ∈ SH(k)I≥0 (resp. E ∈ SH(k)I≤0, E ∈ SH(k)I=0). Then

(1) MGL ∧ E ∈ SH(k)I≥0 (resp. . . . ), and

(2) MGL∗,∗E is concentrated in Chow degrees ≥ 0 (resp. . . . )

As a result, we know that the MGL-homology of τI=iE concentrated in Chow degree i, and

MGLp,qτI=iE = MGLp,q(E), if c(p, q) = i. (10)

Its proof can be done by applying MGL on the fiber sequence decided by τ .

After the setting of I , we can apply it to the homotopy t-structure.

Definition 3.1. Let SH(k)≥0 denote the subcategory of SH(k) generated under colimits and extensions by

Σ∞
+ X ∧G∧n

m for X ∈ Smk and n ∈ Z. This defines the non-negative part of the homotopy t-structure.

According to [Hoy15, Theorem 2.3], we have

SH(k)≥0 = {E ∈ SH(k)|πi+n,n(E) = 0fori < 0, n ∈ Z}(resp. ≤ 0) (11)

Definition 3.2 (actually a theorem). Let Id be the category SH(k)≥d ∩ I . This is the non-negative part of a

t-structure on SH(k).

Next, we need to show the fibers we need staying in the Id and that their MGL-homologies of them

aren’t affected by this operation.

Proposition 3.2. Let E ∈ Id. Then we have the following properties:

(1) τd≤0E ∈ Id,

(2) MGL2∗,∗τ
d
≤0E

∼= MGL2∗,∗E,

Suppose now that E ∈ Id+1. Then we have additionally the following:

(3) π∗,∗τd≤0E is concentrated in Chow degrees ≤ 0, and

(4) MGL∗,∗τ
d
≤0E is concentrated in Chow degree 0.

In addition, the directed system along the degree of truncation functors forms a colimit diagram.
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Proposition 3.3. Let E ∈ SH(k). There are directed systems

τn≤0E → τn−1
≤0 E → · · · → τ≤0E, (12)

τn≥0E → τn−1
≥0 E → · · · → τ≥0E, (13)

which are colimit diagrams.

We have an MGL-based motivic Adams-Novikov spectral sequence as follows:

Ext∗,∗,∗MGL∗,∗MGL(MGL∗,∗,MGL∗,∗X) ⇒ π∗,∗X
∧
MGL (14)

(MGL2∗,∗,MGL2∗,∗MGL) is a Hopf algebroid canonically isomorphic to (MU2∗, MU2∗MU ).

In particular for E ∈ SH(k), the graded abelian group MGL2∗,∗E is canonically a comodule over

MU2∗MU .

Apply the MGL-based motivic Adams-Novikov spectral sequence on the above spaces, we have:

Theorem 3.4. Let E ∈ SH(k)I≥0. Then

(1) the canonical map τI≤0E → τI≤0E
∧
MGL to the MGL-nilpotent completion induces an isomorphism

on π∗,∗, and

(2) π2w−s,wτI≤0E ∼= Exts,2wMU∗MU (MU∗,MGL2∗,∗E)

The main idea of the proof is the following isomorphisms:

τI≤0E ≃ τI≤0τI≥0E ≃ τI≤0colimτdI≥0E ≃ colimτI≤0τ
d
I≥0E ≃ colimτnI≤0τ

d
I≥0E (15)

Let n < d. We shall show that π2w−s,wτ
n
≤0E ≃ Exts,2wMU∗MU (MGL2∗,∗E) and we can get this result

by considering the colimit of n → ∞.

By Lemma 3.12 (2, 4), we find that MGL2∗+i,∗τ
n
≤0E = MGL2∗,∗E for i = 0 and vanishes else.

This leads to the convergence of the Adams-Novikov spectral sequence. Then, τn≤0E is connective in the

homotopy t-structure; hence by [Man21, §5.1 and Theorem 7.3.5] we have

τn≤0(E)∧MGL ≃ τn≤0(E)∧η (16)

Since thr connective property of τn≤0E, τn≤0(E)∧ → τn≤0(E)∧η induces an equivalence on π∗,∗. This

concludes the proof of part (2).

For part (1), Corollary 3.7 implies that the Adams-Novikov spectral sequence for τ I≤0E collapses and

π2w−s,wτI≤0(E)∧MGL
∼= Exts,2wMU∗MU (MU∗,MGL2∗,∗E) (17)

Hence part (1) follows from part (2).

Here are some corollaries of this theorem that we will use later.

Lemma 3.5. Let E ∈ SH(k). If πi,0(E∧Th(ξ)) = 0 for all i ∈ Z and K-theory points ξ on smooth proper

varieties X , thn E ≃ 0.

Corollary. Let E ∈ SH(k). Then E is Chow-∞-connective if and only if E ∧MGL ≃ 0.
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4 Reconstruction theorem

4.1 Comonadic descent

By [Bac18b, Lemma 29], we know that 1c=0 -Modc♡ ≃ SH(k)c♡. As a result, we can get the

information of SH(k)c♡ by analysising the structure of 1c=0 -Modc♡. The tool we will use is the comonadic

descent.

Suppose given a presentably symmetric monoidal category D and A ∈ CAlg(D). We obtain a

free-forgetful adjunction

F : D ↔ A -Mod : U (18)

and the endofunctor

C := FU = ⊗A : A -Mod → A -Mod (19)

which acquires the structure of a comonad.

We denote by C -CoMod the category of comodules under C [Lur17a, Definition 4.2.1.13], and hence

obtain a factorization [Lur17a, §4.7.4]

D ↔ C -CoMod ↔ A -Mod (20)

where C -CoMod → A -Mod is the forgetful functor which we denote by H (with right adjoint the cofree

comodule functor) and D → C -CoMod sends X to X ⊗A with its canonical comodule structure.

We can use cobar resolution to describe those objects in C -CoMod in the classical way. Its

monoidal structure is induced by the left adjunction and its t-structure is induced by the cobar reso-

lution. That is, the subcategory corresponds to limCB•(A) -Mod[m,n] which means the subcategory

of those chain complexes bounded in this range. We denote such category as C -CoMod[m,n]. For

C[m,n] : A -Mod[m,n] → A -Mod[m,n], we have C -CoMod[m,n] ≃ C[m,n] -CoMod. C♡ = C[0,0]. [0,∞]

and [−∞, 0] correspondent to the non-negative part and the non-positive part.

Then, we can try to describe the heart of such ∞-category with t-structure. Let C -CoMod♡ω denote

the category of its compact objects. According to Hovey’s result, we have

Hov(C) := Ind(Thick(C -CoMod♡ω)) (21)

where Thick(C -CoMod♡ω) denotes the thick subcategory of C -CoMod generated by C -CoMod♡ω

and Ind denote the category obtained by freely adding filtered colimits (see [Lur17b, 5.3.5.1]), which have

an adjunction

Hov(C) ↔ C -CoMod. (22)

By setting D = 1c=0 -Mod and A = MGL ∧ 1c=0 (just MGLc=0), we have such adjunctions:

1c=0 -Mod ↔ C -CoMod ↔ MGLc=0 -Mod. (23)

For the Chow t-structure in 1c=0 -Mod and the t-structure we defined as above, we have
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Proposition 4.1. (1) The free functor F : 1c=0 -Mod → C -CoMod is t-exact and symmetric monoidal.

(2) For −∞ ≤ m ≤ n < ∞, the restriction 1c=0 -Mod[m,n] → C -CoMod[m,n] is an equivalence. In

particular

1c=0 -Modc♡ ≃ C -CoModc♡. (24)

(3) The functor F induces a symmetric monoidal equivalence 1c=0 ≃ Hov(C).

For the second result, we need the Barr-Beck-Lurie theorem [Lur17a, Theorem 4.7.3.5]. This theorem

need us to prove: 1c=0 -Mod[m,n] → MGLc=0 -Mod[m,n]. is conservative, and F -split totalizations exist

in 1c=0 -Mod[m,n] and are preserved by F .

Then, we have

SH(k)c♡ ≃ 1c=0 -Modc♡ ≃ Cc♡ -CoMod. (25)

where Cc♡ is the comonad on MGLc=0 -Modc♡ obtained by restricting C.

4.2 Spectral Morita theory

We still need to deal with the right part of the following adjunctions.

D ↔ C -CoMod ↔ A -Mod (26)

that is, connect A -Mod with C -CoMod in a heart-preserving way. In addition, we need to connect

A -Mod with something on the algebraic side. All of these are finished by the spectral Morita theory.

Roughly speaking, the spectral Morita theory is a category of presheaf over the pure MGL-motives

which have some extra structure. The algebraic information is hidden in the extra structure. (The extra

structure is the mapping space between each object in PMMGL(k) is enriched over MU2∗MU -CoMod.)

For a smooth proper variety X and i ∈ Z, denote X{i} ∈ MGLc=0 -Mod as the object (Σ2i,iX+ ∧
MGL)c=0 ≃ Σ2i,i(X+)c=0 ∧MGL. By the Thom isomorphism, these are generators of MGLc=0 -Mod

(as a localizing subcategory). Write PMMGL(k) ⊂ MGLc=0 -Mod for the smallest idempotent complete

additive subcategory containing the objects X{i}. For now, we view this as a spectrally enriched category.

By duality and adjunction, we have

MapPMMGL(k)(X{i}, Y {j})

≃MapPMMGL(k)(MGLc=0, (X × Y ){j − dX − i})

≃MapSH(k)(S
2(i+dX−j),(i+dX−j), ((X × Y )+)c=0 ∧MGL).

(27)

π∗MapPMMGL(k)(X{i}, Y {j}) ≃ MGL∗+2(i+dX−j),(i+dX−j)((X × Y )+)c=0 (28)

is concentrated in degree 0 due to proposition 3.6 (That proposition describes the MGL-homology.) In

other words, our spectrally enriched category PMMGL(k) is just an additive ordinary 1-category. The above
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computation together with Corollary 3.7 shows that

MapPMMGL(k)(X{i}, Y {j}) ≃ MGL2(i+dX−j),(i+dX−j)(X × Y ) ≃ MGL2(dY +j−i),(dY +j−i)(X × Y ).

(29)

Remark. We can generalize this result by replacing MGL with another oriented ring spectrum in SH(k). It

also has some compatibility with maps between such spectra.

Since we have an explicit description of PMMGL(k) as a spectrally enriched category, we should be

able to recover MGLc=0 -Mod by a variant of Morita theory, such as [SS03].

For an ∞-category D with finite coproducts, we use the notation

PΣ(D) = Fun×(Dop, Spc),PSH(D) = Fun×(Dop,SH),PAb(D) = Fun×(Dop, Ab), (30)

where Fun× denotes the category of product-preserving functors. Provided that D is additive, there are

equivalences [Lur18, Remark C.1.5.9]

PSH(D)≥0 ≃ PΣ(D),PSH(D)♡ ≃ PAb(D). (31)

Lemma 4.2. Let D be a small semi-additive ∞-category. The full subcategory PSH(D)≥0 consisting of

functors F : Dop → SH≥0 ⊂ SH is generated under colimits and extension by the image of the canonical

functor D → PSH(D). In particular PSH(D)≥0 is the non-negative part of a t-structure. Its non-positive

part consists of the functors F : Dop → SH≤0 ⊂ SH.

We have such equivalence between ∞-categories with t-structure:

Proposition 4.3. PSH(PMMGL(k)) ≃ MGLc=0 -Mod is a canonical t-exact, symmetric monoidal equiv-

alence.

As a result, we can define πc
i (E)(X) = πiMapMGLc=0 -Mod(X,E) for given E ∈ MGLc=0 -Mod

which induces an equivalence MGLc=0 -Modc♡ → PAb(PMMGL(k)) when i = 0.

Then, the equivalence can be described by such explicit functors:

Corollary. (1) The functor πc
0 : MGLc=0 -Modc♡ → PAb(PMMGL(k)) is an equivalence.

(2) For E ∈ MGLc=0 -Mod we have E ∈ MGLc=0 -Modc≥0 iff πc
i (E) = 0 for all i < 0. (It’s the

same for other parts in a t-structure)

(3) The Chow t-structure on MGLc=0 -Mod is non-degenerate.

An object F ∈ MGLc=0 −Modc♡ ≃ PAb(PMMGL(k)) has such information according to the above

equivalence:

• For every smooth proper variety X a graded abelian group F (X)∗ = πc
0(F (X{∗}))

• For every graded MGL-correspondence α : X → Y a homomorphism α∗ : F (Y )∗ → F (X)∗,

subject to the conditions that

– for composable MGL-correspondences α, β we have α∗β∗ = (βα)∗,
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– id∗ = id and 0∗ = 0, as well as

– for parallel MGL-correspondences α∗ + β∗ = (α+ β)∗

SincePAb(PMMGL(k)) has enough projective objects, with the help of Lurie’s theorem, we have

PSH(PMMGL(k)) ≃ D(PAb(PMMGL(k))).

The diagram in the P20 of BKWX, draw it in the formal version.

Finally, we need to connect the above discussion with the comonad we discussed before.

Definition 4.1. FunL
0 (MGLc=0 -Mod,MGLc=0 -Mod) is a subcategory of those functors F which pre-

serve colimits and heart of MGLc=0 -Mod.

Lemma 4.4. FunL
0 (MGLc=0 -Mod,MGLc=0 -Mod) → FunL(MGLc=0 -Modc♡,MGLc=0 -Modc♡)

is an equivalence.

This lemma implies that {cocontinuous comonads on MGLc=0 -Mod preserving the heart} equals to

{cocontinous comonads on MGLc=0 -Modc♡}. Under the above equivalence, the comonad C corresponds

to its restriction to the heart, which we denote by Cc♡ or also by C when it is clear in the context. Now,

we need to check that the elements in Cc♡ -CoMod correspondent to some element in PAb(PMMGL(k)).

That is, check C preserves the heart.

We can view [X{∗}, Y {∗}] as a single graded group by taking the first ∗ to be 0. Observe that for

smooth proper varieties X,Y , the mapping set, [X{0}, Y {∗}]PMMGL(k), is an MU2∗MU -comodule; indeed

we have seen that up to some shift in degrees it identifies with MGL2∗,∗(X × Y ). In other words, for any

graded MGL-correspondence α : X → Y ∈ [X{0}, Y {∗}]PMMGL(k), we obtain

△(α) =
∑
i

pi⊗αi ∈ MU2∗MU⊗MU2∗MGL2∗,∗(X×Y ) ≃ MU2∗MU⊗MU2∗ [X{0}, Y {∗}]PMMGL(k)

(32)

For F ∈ MGLc=0 -Modc♡, due to Remark 4.10, is a kind of presheaf on smooth proper varieties

together with some extra data, namely an action by MGL-correspondences. We wish to describe CF ∈
MGLc=0 -Modc♡, again this is a presheaf with an action by MGL-correspondences.

Remark. We have CF = MGLc=0 ∧1c=0 F , which has two structures as an MGLc=0-module. Since

the underlying spectra are the same, the right module structure has the same value on sections as the left

module structure when viewed as an object of PSH(PMMGL(k)), however, the action by graded MGL-

correspondences differs. The “correct” action is on the left, and given a correspondence α : X → Y we

denote it by α∗
L : CF (Y ) → CF (X)

Proposition 4.5. (1) Given F ∈ MGLc=0 -Modc♡ ≃ PAb(PMMGL(k)), the object CF is given on

sections by (CF )(X)∗ = MU2∗MU ⊗MU2∗ F (X)∗. Given an MGL-correspondence α : X → Y , the

action α∗
L : CF (Y ) → CF (X) is given by △(α)∗. In other words for s ∈ F (Y )and p ∈ MU2∗MU we

have α∗
L(p⊗ s) =

∑
i ppi ⊗ α∗

i (s), in the notation for △(α) of above.
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(2) The counit map CF → F is given on sections by p⊗ s → ϵ(p)s, where ϵ is the counit of the Hopf

algebroid (MU2∗,MU2∗MU).

(3) The comultiplication map CF → C2F is given on sections by p⊗ s → △(p)⊗ s.

Remark. As we have observed above, the mapping sets in PMMGL(k) are naturally MU2∗MU -comodules.

In fact this makes PMMGL(k) into a category enriched in MU2∗MU -comodules. The compatibility

condition displayed above precisely means that SH(k)c♡ is equivalent to the category of enriched presheaves

on PMMGL(k) (see e.g. [Rie14, §3.5]).

Here is the second main result of this paper:

Theorem 4.6. The functor sending F ∈ SH(k)c♡[1/e] to the presheaf on PMMGL(k) given by F∗(X) =

[Σ2∗, ∗X+, F ∧ MGL] induces an equivalence of categories between SH(k)c♡[1/e] and the category of

enriched presheaves on PMMGL(k) (with values in MU2∗MU -comodules).

The proof of this theorem is finished by Remark 4.11, which is the equivalence betweenMGLc=0 -Mod

and PSH(PMMGL(k)) induced by their heart. Then,

F : 1c=0 -Modb ↔ MGLc−0 -Modb ≃ Db(MGLc−0 -Modc♡b ) : R. (33)

Then check according to Lurie’s theorem. i.e. F,R t-exact, MGLc−0 -Modb has enough injective and so

on.

4.3 W -cellular objects

To make our result suitable for some explicit calculation, we still need to restrict our view on the cellular

case. We have a generalization of cellular objects which are called W -cellulars.

Definition 4.2. Let W be a set of smooth proper schemes over k that contains Spec(k) and is closed under

finite products. Define the W -cellular category, denoted by SH(k)wcell to be the subcategory of SH(k)

generated under taking colimits and desuspensions by objects of the form Th(ξ) for ξ ∈ K(X) and X ∈ W .

Then we can get W -cellular Chow t-structure by ”restrict” Th(ξ) for ξ ∈ K(X) and X ∈ W and they

share similar properties with the cellular case. What’s more, the cellularization functor is t-exact for the

Chow t-structures as well as the A -Mod, Awcell -Mod. The reconstruction theorem also has a W -cellular

version. Since we have little time, we will omit details.

The most interesting application of W -cellular is shown as follows.

First, set W to be {Spec(l)|l/k is a finite separable extension }. Let G = Gal(k) be the absolute

Galois group. Recall that the stable category of genuine G-spectra SH(BG) [BH17, Example 9.12] admits

a t-structure with heart the category of G-Mackey functors [BH17, Proposition 9.11]

PAb(Span(FinG)) =: MackG (34)
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Here FinG denotes the category of finite discrete G-sets. The canonical symmetric monoidal cocontinuous

functor SH → SH(BG) induces the “constant Mackey functor”

Ab → MackG, A → A. (35)

This is symmetric monoidal and so preserves rings, Hopf algebroids etc. In particular, from the usual

Hopf algebroid (MU2∗,MU2∗MU) we obtain the constant Hopf algebroid in (graded) Mackey functors

(MU2∗,MU2∗MU).

As a result, we have such equivalence:

Corollary. Set W to be {Spec(l)|l/k is a finite separable extension }. Let G = Gal(k) be the absolute

Galois group. We have

SH(k)wcell,c♡ ≃ MU2∗MU -CoMod (36)

1c=0 -Modwcell ≃ Hov(MU2∗MU) (37)

MGLc=0 -Modwcell,c♡ ≃ MU2∗ -Mod. (38)

Here -CoMod, Hov and -Mod are performed relative to MackG.

For the trivial extension, we can remove the underline, and then we get the theorem 1.9, which supports

us to do some explicit calculations with these equivalences. The idea of the proofs is similar to the normal

case so I will not write it again.
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