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1 Introduction

In this note, we suppose everything is HFmot
p -completed. HFmot

p ∗,∗ = Fp[τ ] where τ is in bidegree

(0,−1). Ŝ1,0 is the suspension spectrum of the simplicial sphere, and Ŝ1,1 is the suspension spectrum of the

multiplicative group.

The main result of GWX is the equivalence between two ∞-categories with t-structure.

Theorem 1.1. There is an equivalence of stable ∞-categories equipped with t-structures at each prime p:

Db(BP∗BP -Comodev) ≃ Ŝ0,0/τ -Modbharm (1)

between the bounded derived category of p-completed BP∗BP -comodules that are concentrated in even

degrees, and the category of harmonic motivic left module spectra over Ŝ0,0/τ , whose MGL-homology has

bounded Chow-Novikov degree, with morphisms the Ŝ0,0/τ -linear map.

This equivalence induces an equivalence in the motivic Adams spectral sequence and the algebra

Novikov spectral sequence.

Theorem 1.2. For each prime p, there is an isomorphism of spectral sequences between the motivic Adams

spectral sequence for Ŝ0,0/τ and the algebraic Novikov spectral sequence for the classical sphere spectrum

Ŝ0. Here τ can be lifted to a map Ŝ0,−1 → Ŝ0,0, and Ŝ0,0/τ is its cofiber.

As a result, we have

Theorem 1.3. There is an isomorphism between Ext∗,∗BP∗BP (BP∗, BP∗) and π∗,∗(Ŝ0,0/τ) that preserves

the multiplicative filtrations, composition products and higher compositions in the respective categories.

With this equivalence, some differentials in the classical Adams spectral sequence can be detected by

the algebraic Novikov spectral sequence. In addition, this equivalence is related to the Miller square.

We can build a motivic version Miller square. The classical Miller square is a diagram of spectral

sequences. Theorem Adams spectral sequence and the Adams-Novikov spectral sequence are connected by

this diagram. By replacing these spectral sequences with the motivic version, we can get the motivic Miller
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square. Since some differentials can be detected by the classical Miller square, the same method can be used

to detect differentials for the motivic version.

What’s more, the spectral sequences in the classical Miller square are isomorphic to the motivic version

except the Adams spectral sequence and the motivic Adams spectral sequence. However, they are isomorphic

if we invert the τ -torsion part of the motivic Adams spectral sequence.

To compute a nontrivial classical Adams differential, for any r, start with an algebraic Novikov dr-

differential. Theorem 1.17 gives us a motivic Adams dr-differential for Ŝ0,0/τ . Pulling back to the bottom

cell of Ŝ0,0/τ of the source element gives us a motivic Adams dr′-differential for the motivic sphere with

r′ ≤ r. Using the Betti realization functor, we then obtain a classical Adams dr′-differential!

2 An algebraic model for cellular MUmot/τ -modules.

Definition 2.1. Denote by

MUmot
∗,∗ /τ -Mod (2)

the abelian category of graded left modules over MUmot
∗,∗ /τ , and by

MUmot
∗,∗ /τ -Mod0 (3)

as the full subcategory of MUmot
∗,∗ /τ -Mod spanned by all graded modules M∗,∗ that are concentrated in

Chow-Novikov degree 0,

The relation between MUmot/τ -Modbcell and Dd(MU∗ -Modev) can be seen as a simpler version of

the relation between Ŝ0,0/τ -Modbharm and Db(MU∗MU -Comodev). So section 4 in GWX shares the

same structure as section 3 in the original paper, and we can start with the simple case. Besides as a preview

of the following section 4, the result in this chapter is also helpful to the construction of MUmot/τ -based

Adams resolutions in the category Ŝ0,0/τ -Modbcell.

We want to show that there is a t-exact equivalence of stable ∞-categories:

MUmot/τ -Modbcell → Dd(MU∗ -Modev), (4)

whose restriction on the heart is given by

MUmot/τ -Mod♡cell → MU∗ -Modev. (5)

To prove the above equivalence, we will use the following strategy. We start with building a spectral

sequence which is called the universal coefficient spectral sequence in MUmot/τ -Modcell. With the

help of this spectral sequence, we can prove the equivalence on the heart for the given t-structure on

MUmot/τ -Modbcell. The equivalence can be extended to the whole ∞-categories by Lurie’s theorem.

First, We have an equivalence MUmot
∗,∗ /τ -Mod ∼= MU∗ -Modev which is induced by π∗,∗. The sketch

of the proof is listed as follows. We can prove it by the universal coefficient spectral sequence as the theorem
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3.2.

Es,t,w
2 = Exts,t,wMUmot

∗,∗ /τ (π∗,∗(X), π∗,∗(Y )) ⇒ [Σt−s,wX,Y ]MUmot/τ . (6)

The main idea of the proof is to consider a free resolution of π∗,∗X over MUmot
∗,∗ /τ and build the spectral

sequence in a classical way.

To be specific, there is an isomorphism [X,Y ]MUmot/τ → HomMUmot
∗,∗ /τ (π∗,∗(X), π∗,∗(Y )) induced by

π∗,∗ if we give some restriction on X and Y which allows us compute homotopy groups purely algebraically.

Considering the possible targets and sources of E0,0,0
2 , which are vanishing due to there being nothing in the

possible range, is the main idea of the proof.

Next, we will prove the equivalence of the heart. π∗,∗ induces this functor, which is fully faithful

according to the above result. The surjective is proved in Proposition 3.5. To achieve this target, we can

realize the free object at first, then for normal objects, find a free resolution, and then build an Adams-like

tower. The colimit of those fibers is the realization in MUmot/τ -Mod♡cell.

Then we need to show the natural filtrations (by the Chow-Novikov degree) form a t-structure on

MUmot
∗,∗ /τ -Modbcell. We just need to check those four properties in Proposition 3.6, which is a routine.

Finally, we just need to show that the homotopy groups vanish at the negative degrees. That’s what we do

in theorem 3.8. That’s also completed due to the universal coefficient spectral sequence due to the degree

reason. So we have MUmot/τ -Modbcell → Dd(MU∗ -Modev) as an equivalence between ∞-categories.

3 An algebraic model for harmonic Ŝ0,0/τ -modules.

The main target of this section is to prove that there is a t-exact equivalence of stable ∞-categories

Ŝ0,0/τ -Modbharm → Db(MU∗MU -Comodev), (7)

whose restriction on the heart is given by

MUmot
∗,∗ : Ŝ0,0/τ -Mod♡harm → MU∗MU -Comodev. (8)

Here we will give a brief introduction of the category of harmonic Ŝ0,0/τ -modules and the category

of MU∗MU -comodules at first. A Ŝ0,0/τ -module spectrum Y is harmonic if it is Ŝ0,0/τ -cellular and the

natural map Y → Y ∧
MUmot is an isomorphism on π∗,∗. Since the two completions X∧

MGL in the category

C−mot− Spectra and X∧
MUmot in the category Ŝ0,0 -Mod are equivalent for any X in Ŝ0,0 -Modcell. 1

The category of harmonic Ŝ0,0/τ -module spectra is denoted by Ŝ0,0 -Modharm, which is a subcategory of

Ŝ0,0 -Modcell.

If we forget the motivic weight, we have the equivalence

MU∗MU -Comodev ∼= MUmot
∗,∗ MUmot/τ -Comod0, (9)

so we can get a diagram like the above section.

1Being harmonic is closed under taking suspensions, finite products and fibers.
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The strategy of proof is similar to the strategy of the above section but some techniques are introduced

to overcome some new problems. 2

The first problem is that we need to change π∗,∗ to MUmot
∗,∗ , the MU -homology. As a result, the

universal coefficient spectral sequence is replaced by a new spectral sequence called the absolute Adams-

Novikov spectral sequence which is introduced in section 5.

The second problem appears at the equivalence between the hearts. To be specific, since we don’t

have the free resolution for the part of essential surjectivity. We need the Landweber Filtration Theorem to

construct the preimage.

Landweber’s Filtration Theorem (Theorem 4.4) describes comodules over MU∗MU ”filtrational”.

That is, any comodule M over MU∗MU whose underlying MU∗-module is finitely presented, can be

reconstructed by finitely many extensions of suspensions of MU∗/In.

Then we need to find the preimage of MU∗/In. It is proved by the 2-out-of-3 lemma (along a short

exact sequence) and the induction on n for MU∗/In. With the lemma, we just need to consider the preimage

of MUmot
∗,∗ (Prop 4.11), and it has been proved in the above section.

Finally, we still need to show that the t-structure acts as we expect as well as the equivalence between

∞-categories. That is a routine.

3.1 Absolute Adams-Novikov spectral sequence

We need this spectral sequence since the classical one leads us to theπ∗,∗Y ∧
MUmot instead of [X,Y ∧

MUmot ]Ŝ0,0/τ
.

We have two reasons for that. The first reason is we are dealing with morphisms in Ŝ0,0/τ -Modcell instead

of classical motivic spectra. Another reason is we need a general cellular Ŝ0,0/τ -module than just the unit

object Ŝ0,0/τ for the position of X . The relative injective resolution also fails due to the X may not be a

projective object. So we need the absolute one.

For the absolute Adams-Novikov spectral sequence, we resolute with ”absolute” injective objects instead

of relative injectives. Lemma 5.1 and 5.3 show the relation between an injective module inMUmot
∗,∗ /τ -Mod0

and its realization in MUmot/τ -Mod♡cell. Those lemmas show that their preimage of the injective objects

in MUmot
∗,∗ /τ -Mod0 are injective, and those injective objects have injective images in MUmot

∗,∗ /τ -Mod0

satisfy our demands (as Y ). Then we need to resolute ordinary Y by those objects that have injective images

in MUmot
∗,∗ /τ -Mod0. This resolution is the absolute Adams-Novikov resolution. 3

2The connections between the categories in this section and the previous section are shown in the second diagram of P39.

3Of course, we need to prove that such a resolution exists. That’s what we do in Prop 5.5. In some views, the category
MU∗MU -Comodev has enough injective objects. Due to this fact, we can always find such a resolution. What’s more, in
the proof, we need to construct a map between this tower and the classical Adams-Novikov tower, that is useful in the proof of the
convergence of this spectral sequence (Theorem 5.6).
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4 The equivalence between spectral sequence.

Since we already have t-exact equivalences between some ∞-categories, Here’s a natural question:

when does such equivalence induce an equivalence between spectral sequences? In this section, we will

show the gap and list those things we need to check.

4.1 The algebraic Novikov tower

For the BP∗BP -comodule BP∗, its relative injective resolution

BP∗ → C0
0 → C1

0 → · · · (10)

is a long exact sequence in the abelian category of BP∗BP -comodules, that satisfies the following two

conditions:

• The long exact sequence (9.1) is split exact as BP∗-modules.

• Each comodule Cs
0 is relative injective.

From now on, we fix such a relative injective resolution C∗
0 of BP∗ that is concentrated in even internal

degrees. Such a relative injective resolution exists. 4.

For a ≥ 1 let C∗
a be the sub cochain complex of C∗

0 defined by

Cs
a = Ia−sCs

0 (11)

Here Ir = BP∗ for r ≤ 0.

Denote Q∗
a as the quotient cochain complex of the inclusion map C∗

a+1 → C∗
a , we have a tower of

cochain complexes as follows:

Here’s the diagram

Here Qs
a = Ia−sCs

0/I
a−s+1Cs

0 which is bounded by definition.

Therefore, although the cochain complexes C∗
a are unbounded, they live in the category Db(BP∗BP −

Comodev).

Applying the functor

R∗,∗HomBP∗BP (BP∗,−), (12)

where R∗,∗HomBP∗BP (BP∗,−) is the derived homomorphisms in the category Db(BP∗BP −Comodev),

we get a spectral sequence with the E1-page

R∗,∗HomBP∗BP (BP∗, Q
∗
a) (13)

converging to

R∗,∗HomBP∗BP (BP∗, BP∗) = Ext∗,∗BP∗BP (BP∗, BP∗). (14)

This is the regraded algebraic Novikov spectral sequence.

4for example the cobar complex
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4.2 Characterization of Adams towers

We denote:

HFmot
p /τ := Ŝ0,0/τ ∧

Ŝ0,0 HFmot
p (15)

Definition 4.1. A tower in Ŝ0,0/τ −Modbharm is a motivic Adams tower if

Here’s the diagram

• Each motivic spectrum Km is a retract of a wedge of suspensions of HFmot
p /τ

• Each map fm : Xm → Km induces an epimorphism on the HFmot
p -cohomology. Or equivalently,

each map gm : Xm+1 → Xm induces the zero map on the HFmot
p -cohomology.

Actually the second condition equivalent to check that each map gm induces the zero map on [−, HFmot
p /τ ]

Ŝ0,0/τ

Since

Db(BP∗BP − Comodev) ≃ Db(MU∗MU − Comodev) ≃ Ŝ0,0/τ −Modbharm, (16)

we can pull the first tower into the category of Ŝ0,0/τ −Modbharm.

Proposition 4.1. The above tower is a motivic Adams tower in the sense of the above definition, if the

following two conditions are satisfied for the re-graded algebraic Novikov tower in the categoryDb(BP∗BP−
Comodev):

• Each Q∗
a is quasi-isomorphic to a retract of a direct sum of shifts of BP∗BP/I .

• Each map qa : C∗
a → Q∗

a induces an epimorphism on R∗,∗HomBP∗(−,Fp). Or equivalently, each

map ia : C∗
a+1 → C∗

a induces the zero map on R∗,∗HomBP∗(−,Fp).

These conditions correspond to those conditions in that definition.

The first condition stands due to such lemma:

Lemma 4.2. Under the equivalences of the hearts, HFmot
p /τ corresponds to BP∗BP/I .

The second one stands due to such lemma:

Lemma 4.3. Suppose that X is in the category Ŝ0,0/τ −Modbharm and that C∗(X) is the cochain complex

of BP∗BP -comodules representing the image of X under the equivalence between ∞-categories. Then we

have

[Σ∗,∗X,HFmot
p /τ ]

Ŝ0,0/τ
∼= R∗,∗HomBP∗(C

∗(X),Fp) (17)

where R∗,∗HomBP∗(−,−) is the derived homomorphism in the derived category of BP∗-modules.
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